Implementasi Algoritma Rough Set dengan Software Rosetta untuk Prediksi Hasil Belajar

Main Article Content

Silvana Samaray

Abstract

Hasil belajar mahasiswa merupakan capaian belajar yang diperoleh mahasiswa selama perkuliahan dalam bentuk angka, huruf atau simbol. Perolehan hasil belajar mahasiswa ditentukan oleh beberapa unsur, di antaranya jumlah kehadiran, nilai tugas, nilai ujian tengah semester (UTS) dan nilai ujian akhir semester (UAS). Tiap unsur memiliki persentase yang berbeda-beda dalam penentuan hasil belajar. Hasil belajar terkadang tidak sesuai dengan target yang diinginkan. Mahasiswa cenderung mengabaikan unsur dengan persentase kecil (contoh: nilai tugas) dan hanya fokus pada unsur dengan persentase yang besar (contoh: nilai UAS). Penelitian ini bertujuan untuk memprediksi hasil belajar mahasiswa berdasarkan kehadiran, nilai tugas, nilai UTS dan nilai UAS. Penelitian ini dapat dijadikan informasi awal bagi mahasiswa agar memiliki komitmen yang tinggi terhadap semua unsur penentu hasil belajar. Metode pengambilan data menggunakan metode dokumentasi. Metode pengolahan data menggunakan algoritma Rough Set, dimulai dari pemilihan atribut kondisi dan atribut keputusan, dilanjutkan dengan proses menghilangkan data ganda, hingga memperoleh reduct dan menghasilkan rules. Pengolahan data menggunakan software Rosetta. Penelitian menghasilkan 14 buah rules berupa pola aturan sebagai acuan untuk memprediksi hasil belajar lulus, cukup dan tidak lulus. Berdasarkan rules yang dihasilkan, disimpulkan bahwa atribut kondisi yang paling berpengaruh dalam penentuan hasil belajar adalah nilai UAS dilanjutkan dengan nilai tugas dan jumlah kehadiran.

Downloads

Download data is not yet available.

Article Details

How to Cite
Samaray, S. (2022). Implementasi Algoritma Rough Set dengan Software Rosetta untuk Prediksi Hasil Belajar. Jurnal Eksplora Informatika, 11(1), 57-66. https://doi.org/10.30864/eksplora.v11i1.498
Section
Articles